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ABSTRACT
The need for efficient propulsion systems allied to increasingly more challenging fixed-wing
UAV mission requirements has led to recent research on the autonomous thermal soaring
field with promising results. As part of that effort, the feasibility and advantages of model
predictive control (MPC)-based guidance and control algorithms capable of extracting energy
from natural occurring updrafts have already been demonstrated numerically. However, given
the nature of the dominant atmospheric phenomena and the amplitude of the required
manoeuvres, a non-linear optimal control problem results. Depending on the adopted
prediction horizon length, it may be of large order, leading to implementation and real-time
operation difficulties. Knowing that, an alternative MPC-based autonomous thermal soaring
controller is presented herein. It is designed to yield a simple and small non-linear
programming problem to be solved online. In order to accomplish that, linear prediction
schemes are employed to impose the differential constraints, thus no extra variables are added
to the problem and only linear bound restrictions result. For capturing the governing non-
linear effects during the climb phase, a simplified representation of the aircraft kinematics
with quasi-steady corrections is used by the controller internal model. Flight simulation
results using a 3 degree-of-freedom model subjected to a randomly generated time varying
thermal environment show that the aircraft is able to locate and exploit updrafts, suggesting
that the proposed algorithm is a feasible MPC strategy to be employed in a practical
application.
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NOMENCLATURE
a simplified dynamics acceleration
~
A state matrix of the linear discrete dynamics
b linear constraint vector
~
B input matrix of the linear discrete dynamics
c QP problem cost vector
~
C output matrix of the linear discrete dynamics
CD drag coefficient
CL lift coefficient
D drag force
~
D feedthrough matrix of the linear discrete dynamics
DOF degree–of–freedom
e total specific energy
EOM equations of motion
_escan total specific energy rate value when in scan mode for latching the

climb mode
_esrc total specific energy rate value when in search mode for latching the

scan mode
f EOM right-hand side vector
ffr system free response vector
ffr,0 system free response vector–linearisation point offset correction
g acceleration due to gravity
G control variation influence matrix
GNSS Global Navigation Satellite System
GR glide ratio
H QP problem Hessian matrix
IMU inertial measurement unit
j sampling step
J cost/objective function
k prediction step
L lift force
L
D lift-to-drag ratio
m aircraft mass
M number of steps in the control horizon
MPC model-based predictive control
N number of steps in the prediction horizon
NLP non-linear programming
Nte maximum number of data points used for thermal estimation
Nwpt maximum number of data points used for waypoint calculation
Q base weighting matrix associated to the output deviation
Q weighting matrix associated to the output deviation
QP quadratic programming
r polar co-ordinate
R base weighting matrix associated to the input action
R weighting matrix associated to the input action
RoC rate of climb
Rt,x thermal reference radius in x direction
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Rt,y thermal reference radius in y direction
s MacCready’s speed to fly function
S wing area
S linear constraint matrix
t time
u control vector
UAV unmanned aerial vehicle
V airspeed
Vt,max thermal maximum intensity
Vt,z air mass vertical velocity derived from a thermal model
Vt,z vector of stored Vt,z values
Vw,z air mass vertical velocity
Vw,z vector of stored Vw,z values
Vz aircraft sink rate
w simplified dynamics integration function
x Cartesian co-ordinate
x state vector
XY vector of stored (x,y) coordinate values
y Cartesian co-ordinate
y output vector
Ŷ output vector history throughout the prediction horizon
Yr set-point vector throughout the prediction horizon
Ŷtraj vector of trajectory history throughout the prediction horizon
z Cartesian co-ordinate
_zmcrd expected climb rate within the next thermal

Greek symbols

αscan scan mode time factor for latching the climb mode
βte vector of decision variables of the thermal estimation problem
γ flight path angle
Γ stage cost function
Δhclb minimum height gain needed to keep climb mode latched
Δrwpt waypoint tolerance radius
ΔT sampling time for prediction & dynamics discretisation
ΔTclb time interval for height gain evaluation in climb mode
ΔTref time interval for reference trajectory update by the high level controller
ΔTscan total scan mode operation time
ΔTsrc minimum search mode operation time before latching the scan mode
ΔTte sampling time for storing thermal estimation data
ΔTwpt sampling time for storing waypoint calculation data
Δu control vector variation
ΔU control vector variation throughout the control horizon
η thermal orientation angle
θ polar co-ordinate
ξ augmented state vector
φ bank angle
ϕ system free response state matrix
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ϕ0 system free response state derivative matrix
ψ heading angle
ω simplified dynamics angular velocity
Ω terminal cost function

Subscripts

cart Cartesian coordinate system
f final
I aircraft position in an earth-fixed Cartesian co-ordinate system
lo lower bound
max maximum
min minimum
pol polar co-ordinate system
r reference (set-point) value
scan scan mode
ss steady-state
t position with respect to the thermal centre
te thermal estimation
up upper bound
wpt waypoint
0 initial/origin/linearisation point

Superscripts
T transpose
~ variation from the linearisation reference point
^ predicted value
' acquired data
* solution of the optimal control problem

1.0 INTRODUCTION
For a long time, the atmospheric energy potential in the form of rising air currents (thermals)
has been explored by glider pilots and soaring birds, allowing them to remain aloft for long
periods of time, eventually covering considerable distances. However, such availability of
“clean” energy still seems to be underestimated outside the sportive and recreational fields.
Only recently the subject has started to receive serious attention from the aeronautical
engineering community as a way of enhancing the performance of powered fixed-wing
aircraft during ordinary missions, resulting, at the same time, in more efficient and
environment-friendly operations. A number of studies have been conducted, mainly during
the past 12 years, which proposed and even flight tested guidance and control algorithms for
autonomous soaring flights. They have focused not only on the thermaling approach but also
on the exploration of different atmospheric/geographical phenomena, such as wind gradients
and slope lift. The widespread usage of unmanned aerial vehicles (UAV), that are frequently
equipped with customisable digital flight control hardware, makes them the most natural
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candidates to incorporate such autonomous capabilities, providing gains in terms of endur-
ance and range.

Small-scale convective air currents are the most common source of lift used by glider
pilots. Having as basic requirement the ground exposition to the solar radiation, thermals
occur over different areas, from flatlands to mountains. Obviously their characteristics depend
on the atmospheric conditions, insolation level and terrain features. Nevertheless, sufficiently
strong updrafts are known to be available throughout all the seasons of the year(1). Given its
major importance, only the thermal phenomenon is treated herein.

A typical thermal soaring flight can be split into two different and alternate phases:
climbing and searching. The climbing stage occurs when the pilot already knows he is flying
close to a usable source of lift and manoeuvres to harvest the maximum amount of energy,
normally trying to establish a circular path around the core of the rising air column (“thermal
centring”). After the updraft is abandoned (normally because it is vanishing) the searching
phase begins, when a new lift zone has to be located in time to avoid outlanding. The sort of
actions to be taken during this stage is governed by the mission objective. It is essential that
an autonomous soaring controller incorporates specific algorithms for dealing with both
flying phases, switching between them when appropriate.

Obviously, locating rising air zones is a key aspect of unpowered flight. Pilots normally
rely on instrument readings (e.g. variometre) for taking immediate actions and on visual clues
for longer-term navigation, such as clouds, terrain characteristics and soaring birds. A data-
base fed with landscape information and past thermal observations could also be used to
enhance the search. However, for working autonomously, most of those recognition methods
would require complex hardware to be onboard, like infrared cameras or computers with high
storage requirements and image processing capability. An alternative and simpler approach is
to use only basic instrument data which is more or less what a human pilot does when gliding
at reasonable height in clear blue sky days. Therefore, with the objective of allowing wider
and less expensive applications, the guidance and control algorithms presented herein assume
the UAV is equipped only with a minimal set of hardware, namely, a Pitot-static system, a
Global Navigation Satellite System (GNSS) receiver and an Inertial Measurement
Unit (IMU).

Most soaring controllers that have been proposed and tested (both numerically and in
flight) are based on classical control schemes (see Section 1.1). Despite the fact that they may
be robust, optimisation is generally not a design driver. On the other hand, the thermal flight
is actually a constant pursuit of maximum climb rate in an uncertain atmospheric environ-
ment. Rising air columns of different shapes and intensities can be found in a single mission
and those parametres may rapidly change with respect to time and altitude(1). A better per-
formance could be expected if the guidance and control algorithm had the capability to
somehow identify and adapt to those variations in real-time. Another important aspect is that
optimal climb rates typically result in the airplane flying close to its operational limitations
with large amplitude of commands to manoeuvre accordingly.

The above-listed aspects, inherent to soaring, may impose certain limitations to the
application of classical control techniques. Nevertheless, the MPC approach seems to be an
adequate tool for dealing with them(2), since

∙ It relies on an internal dynamic model responsible for predicting the time history of the
states under the action of a command sequence. This model can incorporate a proper
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thermal representation and its parametres can be iteratively changed to describe different
atmospheric scenarios.

∙ The commands to be applied at a certain instant of time result from the solution of an
optimal control problem which can be written to mathematically express the energy
gain goal.

∙ MPC algorithms can naturally incorporate constraints in such a way that they are respected
by the controller during the predictions.

As explained in Section 1.2, given the nature of the governing atmospheric phenomena and
the kind of manoeuvres typically performed, in principle, for acceptable autonomous soaring
performance, a non-linear MPC scheme must be adopted. In fact, full non-linear control
algorithms have already been reported and numerical studies demonstrated their feasibility for
thermal flight. In this scenario, the main objective of the present work is to describe an
alternative MPC approach for solving the autonomous soaring problem. Instead of using the
non-linear 3 degree-of-freedom (DOF) equations of motion, the proposed methodology is
based on predictions computed with the help of simpler linear models that may receive quasi-
steady non-linear corrections only to the extent necessary for capturing the dominant effects.
Once converted to discrete time domain, the problem is transcribed to a minimum order non-
linear programming (NLP) problem with linear inequalities only, which tends to be simpler to
solve, potentially requiring less computational resources.

The paper is divided as follows: Section 1.1 presents some of the most relevant recent
works related to the emerging area of autonomous atmospheric energy harvesting by fixed-
wing aircraft flying within thermals, while Section 1.2 gives more details on the contributions
of the proposed research to the field. Section 2 shows how the soaring goals are mathema-
tically translated to an optimal control problem and how MPC-based methodologies can be
implemented to solve it. Furthermore, the main atmospheric and flight dynamics phenomena
involved in thermaling are also exposed. A thorough description of the developed algorithms,
covering controller design, prediction scheme, NLP solution, thermal estimation, reference
trajectories and set-points derivation is given in Section 3. Section 4 covers the simulation
framework description and corresponding numerical results. The autonomous soaring con-
troller is tested in a randomly generated thermal scenario with relatively fast time-varying
characteristics, demonstrating the feasibility of the methodology. Finally, Section 5 sum-
marises the main conclusions derived from this study.

1.1 Previous works

Allen(3) presented a quantitative study of the performance improvements a small electric-
powered UAV with a 2h nominal endurance could obtain using updrafts. Simplified flight
simulations fed with a large database of meteorological measurements predicted significant
benefits achievable year-round, with endurance increase of up to 6 h in winter and 12 h in
summer. Following those positive perspectives, Allen(4) proposed and successfully flight
tested the first practical autonomous soaring system on a 4.27m span motor-glider equipped
with a commercial autopilot package modified to include the developed outer-loop codes.
Total energy rate and acceleration, derived from measurements, are the basic inputs to the
algorithm, which is able to estimate the thermal centre and also to calculate its radius by
fitting an assumed axisymmetric vertical velocity profile. A simple procedure for estimating
and taking into account the thermal drift due to the wind is included. For thermaling, a
reference radius and corresponding steady-state turn rate are defined heuristically. Turn rate
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commands aiming to drive the position and velocity errors to zero are generated by the
algorithm and sent to the inner-loop controller. Additionally, through a simple proportional
gain term, those commands are also modified in order to respond to changes in total energy
acceleration, emulating a technique typically adopted by glider pilots for centring an updraft.

The work by Allen(4) was extended by a series of studies(5,6,7,8,9,10) that proposed algorithm
updates or the inclusion and validation of new features. Moreover, additional numerical and
flight testing was pursued. Some of the aspects covered by those works are the following:
vehicle total energy and vertical air mass velocity calculation; estimation of thermal para-
metres (e.g. centre, radius, strength); filtering and lag treatment of measured signals;
improvement of the thermal centring process; horizontal wind speed estimation and treatment
of corresponding updraft drift; inter-thermal flight strategies; stability and convergence
properties of the thermal centring controller. Robust and reliable designs were obtained, as
well illustrated by Edwards and Silverberg(6), who implemented an autonomous soaring
controller on a 5 kg, 4.3m span platform which placed third in a cross-country competition
against remotely controlled gliders. Furthermore, autonomous flights with range and endur-
ance on the order of 100 km and 5 h respectively have been reported(9) .

While the previously cited works employed classical control techniques, the studies by Lee
et al(11) and Liu et al(12) investigated the autonomous thermal soaring problem in a more
formal way, writing it as an optimal control problem to be solved using a non-linear MPC-
based scheme applied to the non-linear 3 DOF equations of motion (the potential advantages
of using a MPC approach are previously listed in Section 1). State and control constraints
were present and different cost functions were tested for the search mode, while in climb
mode, the maximisation of the total specific energy was the goal. For the updraft estimation,
no predefined thermal shape was assumed. The methodology was evaluated through several
numerical simulations where an unpowered UAV was restricted to fly within a 4 km wide
square airspace subjected to a thermal environment with non-homogeneous distributed
updraft and downdraft areas. The results indicated that the controller was able to avoid
sinking zones, explore the area, identify and exploit thermal cores with overall performance
depending on the algorithm parametres and on the search method adopted. Therefore, the
conceptual feasibility of a MPC controller for extending the loiter time was demonstrated.

The numerical and flight test results reported in the aforementioned references not only
demonstrate the feasibility of autonomous thermal soaring techniques but also indicate they
are becoming mature and promising strategies to improve the performance of fixed-wing
aircraft. However, except when special weather conditions are found, a UAV could hardly
rely on soaring only to accomplish typical missions on a daily basis. Hence, one of the
upcoming challenges is to integrate those emerging technologies on current powered aircraft
in a straightforward and reliable way. Such a scenario was analysed by Edwards(13), who
studied the application of an autonomous thermal controller on an existing hydrogen fuel-cell
powered UAV aiming to increase the vehicle’s endurance when flying a communications
relay task with altitude band and area overfly constraints. In a similar effort, Bird and
Langelaan(14) explored the usage of convective atmospheric energy by hybrid solar/soaring
aircraft to overcome limitations of conventional pure solar designs (e.g. low power density
and limited wing loading range) and achieve performance maximisation. Those works suggest
that soaring algorithms may progressively become a standard tool to be incorporated into the
autonomous flight systems of different airplanes. Certainly, this transition process can be
accelerated by the development of alternative methodologies like the one proposed herein.
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1.2 Present work contribution

A potential drawback of the methodology introduced by Lee et al(11) and Liu et al(12) is the
relatively high computational costs that could hamper the implementation on flight hardware,
since solution times of the order of the sampling interval were reported during workstation
simulations. For that reason, possible code optimisations, alternative implementations and
faster methods are suggested as future developments(11). In addition to that, due to the non-
linear prediction scheme adopted, the process of converting the optimisation problem to the
NLP format becomes more complex. Bearing that in mind, the present work aims to con-
tribute by proposing a simpler yet practical MPC controller which could potentially lead to
faster computations and a more straightforward implementation. Three main aspects make the
present methodology innovative:

1. The optimal control problem related to soaring is inherently non-linear because the
updraft intensity distribution is itself non-linear (in space and time) and significant variations
on the aircraft states usually take place when climb or search manoeuvres are executed.
Moreover, the usually long prediction horizons necessary for proper thermal centring tend to
aggravate that behaviour. Therefore, under those circumstances, the direct use of a linear
model (airplane and thermal) for prediction will lead to poor results with significant dis-
crepancies after few seconds. Knowing that, Lee et al(11) and Liu et al(12) have used fully non-
linear 3 DOF point-mass equations for prediction. In order to implement the NLP solution in
this framework, normally the differential constraints have to be translated to algebraic non-
linear constraints and consequently more variables (associated to the states) need to be
introduced, leading to a larger problem. Furthermore, regular bound constraints become non-
linear restrictions too. The proposed work provides a simpler yet functional alternative,
preserving the main advantages that a linear MPC scheme offers. Its focus relies on using
linear prediction models as much as possible, while applying pertinent corrections to take into
account some of the leading phenomena governing soaring flight. A key aspect is that the
differential constraints are imposed as straightforward matrix operations, therefore all the
restrictions remain linear and the order of the problem is reduced, because only the controls
are treated as variables. Besides the potential to faster and more efficient computation, those
features facilitate the translation to a smaller and less complex NLP problem, allowing
simpler numerical algorithms to be used for its solution. Consequently, easier integration on
flight hardware is also expected.

2. Different search mode algorithms have been proposed and tested by Lee et al(11) and Liu
et al(12). Some of them are devoted to make the aircraft perform a systematic scan of the
airspace, while others aim to avoid previously visited areas. Although all the strategies
yielded satisfactory results during the simulations, a difficulty is the need to deal with a non-
linear optimisation problem at each time step (as when the climb mode is active), whose
solution, depending on some of the involved parametres, may become too costly(12). In order
to bypass heavy online calculations, a simpler search method is introduced herein. It works by
calculating a target waypoint from a least squares problem solution, aiming to maximise the
distance from recently scanned zones and to avoid the airspace boundaries. Once the desired
location is reached, a new waypoint is assigned. Moreover, the reference airspeed is con-
stantly derived from MacCready’s speed to fly rule. The approach resembles the PVH method
employed by Liu et al(12), since it has the combined ability to make the UAV stay away from
recently searched areas and accelerate to quickly leave downdrafts. The fundamental
advantage is that a fully linear prediction model can be applied for the heading and airspeed
tracking, resulting in a simpler quadratic optimisation problem to be solved at each time step.
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Furthermore, the UAV is allowed to cross previously used flight paths, thus avoiding the risk
of ‘getting trapped’ as may occur with the PVH method(12).

3. Lee et al(11) and Liu et al(12) have implemented a global thermal mapping algorithm that
keeps a record of measured updraft intensities throughout the entire flying zone and adopts no
predefined thermal shape. Instead, a Generalised Regression Neural Network (GRNN) is used
for obtaining an estimation of the vertical wind velocity field. That approach allows the
aircraft to ignore or abandon a weak thermal, latch the search mode for exploring the sur-
roundings and, if the quest is unsuccessful, return to a previously visited area where the
stronger lift was detected. The methodology works perfectly in a static or slow time varying
environment where, in principle, areas already scanned need not to be searched again.
However, thermal life cycles may be short, on the order of few minutes, their intensity
generally depends on the height and they drift in response to strong horizontal winds(1).
Therefore, in fast time varying atmospheric scenarios, the usefulness of a global mapping is
questionable. In other words, there may be no advantage at all in leaving a current weak but
sufficiently strong thermal for searching a relatively distant area expecting to come back if no
better thermal is found, since the original updraft may have already vanished. For that reason,
the present work proposes an online estimation of the environment to be applied only when
the climb mode is active and the aircraft is manoeuvring for centring its flight path around the
thermal core. Since there is no need for a generic mapping tool that could accommodate
several updraft and downdraft zones in a wide area, a predefined local ellipsoidal model
suitable for typical thermal shapes is used. As new data are acquired, the model’s parametres
are subsequently tuned to fit updraft intensity measurements. Although estimation fidelity
may be lost, there is no need to keep a long record of measurements and shorter prediction
horizons may be adopted too, since the controller is not ‘concerned’ with the more
distant zones.

2.0 PROBLEM FORMULATION
2.1 Equations of motion

The simulations are based on the rigid body 3 DOF point-mass equations (1). The controls are
bank angle (φ) and lift coefficient (CL), which governs the aircraft lift (L), while V is the
velocity of the vehicle with respect to the air and Vw,z is the air mass vertical velocity
representing the environmental effects. No horizontal wind effects were taken into account:

_V = 1
m V msinðψÞ ∂Vw;z

∂y cosðγÞsinðγÞ +mcosðψÞ ∂Vw;z

∂x cosðγÞsinðγÞ
� �

�mgsinðγÞ�D
� �

_γ = 1
mV V msinðψÞ ∂Vw;z

∂y cosðγÞ2 +mcosðψÞ ∂Vw;z

∂x cosðγÞ2
� �

�mgcosðγÞ + cosðϕÞL
� �

_ψ = LsinðϕÞ
mVcosðγÞð Þ

_xI =VcosðγÞcosðψÞ
_yI =VcosðγÞsinðψÞ
_zI =Vw;z�VsinðγÞ

(1)

In summarised form, the equations of motion (EOM) can be written as Equation (2), being u
the control vector and xcart the state vector, with vehicle’s kinematics written in Cartesian
coordinates:
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xcart = V γ ψ xI yI zI½ �T
u= CL ϕ½ �T
_xcart = fcart xcart; uð Þ ð2Þ

When the climb or scan modes are latched a polar co-ordinate system is more appropriate for
describing the aircraft motion. The xI and yI state variables are then replaced by r and θ
(Equation (3)) with corresponding kinematic equations of motion given by Equation (4):

xpol = V γ ψ r θ zI½ �T
u= CL ϕ½ �T
_xpol = fpol xpol;u

� � ð3Þ

_r =
V

2
sinðγ + θ�ψÞ�V

2
cosðγ�θ +ψÞ

_θ=
V

2r
sinðγ�θ +ψÞ� V

2r
cosðγ + θ�ψÞ ð4Þ

Aircraft performance during soaring flight is essentially governed by its mass and drag polar.
The latter is originally available as a selection of discrete (CL,CD) pairs and a spline function
with an adjustable scalar tension factor is then used to derive the drag coefficient corre-
sponding to any given lift coefficient value, i.e. CD=CD(CL). This is accomplished with the
help of the curv1dp and curv2dp subroutines from Fortran-based Fitgrid interpolation
package.*1 Aerodynamical, geometrical and inertial characteristics of a typical manned 15m
span club class glider (summarised in Table 1) are employed in the simulations.

2.2 Atmospheric effects

The aircraft is subjected to the vertical motion of the air mass, whose velocity Vw,z is assumed
to be a scalar field function of the Cartesian co-ordinates and time (Equation (5)). In principle,
this field does not have restrictions on shape or intensity and may represent any arbitrary
atmospheric condition. It is well known that updrafts’ strength and size may vary con-
siderably with the height(3). However, this is not considered in the present work, since the
objective is to focus on the challenges imposed by the non-homogeneous shape and time-

Table 1
Parametres of the aircraft model

Mass Wing area Max. GR Min. sink Min. speed Max. speed

m (kg) S (m2) L
D

� �
max Vz,min (m/s) Vmin (km/h) Vmax (km/h)

340 12.5 32.7a − 0.68b 65 220
a At 81 km/h.
b At 71 km/h.

1 Available at http://ngwww.ucar.edu/ngmath/fitgrid/fithome.html

1675POGORZELSKI ET AL AUTONOMOUS SOARING USING A SIMPLIFIED MPC APPROACH

http://ngwww.ucar.edu/ngmath/fitgrid/fithome.html


www.manaraa.com

varying characteristics of the thermal fields.

Vw;z =Vw;z xI ; yI ; tð Þ (5)

Giving the controller the ability to take into account atmospheric perturbations requires the
inclusion of a vertical wind mathematical model in the prediction scheme. Different thermal
representations can be found in the literature(15) and, for the present study, a modified model
based on the one proposed by Gedeon(16) is adopted. It was selected for reflecting two
fundamental characteristics which are believed to adequately represent the reality: the
intensity decaying as a function of the square of the distance from the core and the con-
sideration of a downdraft zone surrounding the thermal. However, Gedeon’s model(16) is
axisymmetric, limiting the wind fields it can represent. For this reason, an adjustment is made:
two different reference radii are introduced, one for each Cartesian axis, Rt,x and Rt,y. By
doing so the thermal can assume an elliptical format with maximum intensity Vt,max,
according to Equation (6). Once the basic parametres (Rt,x, Rt,y and Vt,max) are chosen, the
estimated updraft vertical speed (Vt,z) at any location (xI,yI) can be obtained. Note that the
thermal centre position is given by (xt,0,yt,0) and that a rotation angle (η) is also defined. Those
terms are adjustable parametres too.

Vt;z =Vt;maxe
� xt

Rt;x

� �2

+ yt
Rt;y

� �2
� �

1� xt
Rt;x

� �2
� yt

Rt;y

� �2� �
xt = xI�xt;0

� �
cosðηÞ + yI�yt;0

� �
sinðηÞ

yt =� xI�xt;0
� �

sinðηÞ + yI�yt;0
� �

cosðηÞ
(6)

2.3 Steady Thermal Flight Optimisation

If one considers a perfectly axisymmetric updraft (e.g., making Rt,x=Rt,y in Equation (6)) and
a steady atmosphere, then it is possible for a sailplane to remain in an equilibrium condition
with constant velocity (Vss) and bank angle (φss), circling at a certain turn rate ( _ψ ss) and radius
(rss) relative to the thermal core. Given a specified turn rate and velocity, the permanent flight
conditions can be substituted in Equation (1), yielding

_V = 0
_γ = 0
_ψ ss =

LsinðϕssÞ
mVsscosðγssÞð Þ

_ψ ssrssj j� VsscosðγssÞj j= 0

8>>>><
>>>>:

(7)

which is numerically solved for CL,ss, φss, rss and γss using Scilab fsolve subroutine. The
resulting aircraft sink rate (in calm atmosphere) is then computed as

Vss;z =VsssinðγssÞ (8)

Since the UAV is supposed to be within a thermal, the updraft velocity (function of the radius
rss) must be added, yielding the final climb/sink rate:

_zI;ss =Vss;z +Vt;zðrssÞ (9)

Here, two important aspects have to be emphasised(15): (1) the tighter the curve, the greater
the sink rate, Vss,z (for a constant airspeed); (2) the closer to the thermal core the aircraft
circles, the greater the vertical wind velocity it encounters. Those two opposed effects
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represent the essence of thermal flight and are intuitively known by glider pilots. Mathe-
matically, the situation can be described as a static optimisation problem, i.e. for a certain
aircraft and updraft shape, it is necessary to find the combination of velocity and turn rate
which maximises the climb rate.

As detailed in Section 3.1.1, the above-described behaviour plays a major role in the
proposed autonomous soaring algorithm and, in order to consider it, a database is computed
offline. Initially, the permanent flight equations (7) are solved for a rectangular grid of (Vss,
_ψ ss) pairs, yielding corresponding Vss,z values. Those discrete data feed a bi–spline surface
interpolation function with an adjustable scalar tension factor, allowing the sink rate to be
obtained for any arbitrary airspeed and turn rate combination. Again, dedicated Fitgrid
package subroutines are employed for the numerical implementation, namely surf1dp and
surf2dp. Thus, the aircraft vertical velocity in calm atmosphere can be expressed as a function
(with the spline based regression procedures embedded) of airspeed and turn rate as indicated
by Equation (10).

Vss;z =Vss;z Vss; _ψ ssð Þ (10)

2.4 Optimal Control Problem

Soaring flight is essentially an optimisation process where the decisions to be taken by the
pilot or controller at each instant of time aim to maximise a performance index, normally
associated to energy gain or saving. This situation is transcribed to the following optimal
control problem:

min
uðtÞ

J =Ω xðtf Þ
� �

+
Ð tf
t0
Γ xðtÞ; uðtÞ; tð Þdt

s:t:
_xðtÞ= f xðtÞ; uðtÞ; tð Þ; t 2 t0; tf

� 	
;

ulo ≤ uðtÞ≤uup; t 2 t0; tf
� 	

;
xlo ≤ xðtÞ≤ xup; t 2 t0; tf

� 	
;

(11)

whose interpretation is: suppose the aircraft at a given instant of time t0 and corresponding
state x(t0). The objective is to obtain the control and state trajectories (u(t),x(t)), from t0 to a
fixed tf, that minimise the performance index J and, at the same time, respect differential
restrictions _x tð Þ= f x tð Þ; u tð Þ; tð Þð Þ and lower and upper bounds (ulo,xlo,uup,xup).

The differential restrictions are the equations of motion (1), while the control and state
bounds represent the aircraft inherent physical limitations (e.g. stall speed), control system
restrictions (e.g. actuator saturation) or mission related constraints (e.g. geo-fencing). A
certain freedom is allowed in the selection of the performance index, composed by terminal
(Ω) and stage (Γ) cost terms. They can be considerably different depending on the active
flight mode and their choice is essential for defining the controller behaviour.

2.5 MPC-based solutions

A typical approach for solving Equation (11) involves the discretisation of the state and
control trajectories along time so that they are parametrised by a certain number of scalar
coefficients. For example, one can split the time interval into small steps (ΔT) and assume
that x(t) and u(t) are constant within each time step. Another possibility is to use a functional
(e.g. polynomial) basis to approximate the trajectories. In the first case, the state and control
values at specific ‘nodes’ themselves are the scalar parametres, while in the second scenario,
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this role is played by the functions’ coefficients. Once the discretisation is performed, it is
possible to rewrite the continuous time problem (Equation (11)) as a NLP problem to be
solved for a set of scalar variables. During that process, the differential and bound constraints
must be translated accordingly. Many algorithms and softwares which are suitable to
numerically solve NLP problems (with different performance levels) are available.†

The described solution process is a fundamental element of the MPC scheme. At a certain
instant of time (t0), the current state vector (x(t0)) is estimated from sensor readings and the
discretised version of the optimisation problem (Equation (11)) is numerically solved within a
predefined prediction horizon length (tf − t0). The obtained controls (u(t)) are then applied to
the vehicle during a sampling time interval (ΔT) while the entire calculation process is
repeated, so that at the next instant of time (t= t0 +ΔT), a new optimal control sequence is
available. This procedure is successively repeated, always with a constant prediction horizon
length, which is coherent with the receding horizon strategy.

3.0 ALGORITHM DESCRIPTION
The proposed algorithm operates in three different modes, namely, climb, search and scan, as
detailed in Sections 3.1, 3.2 and 3.3, respectively. Section 3.4, on the other hand, describes
the overall logic of operation and mode switching rationale.

3.1 Climb mode

When the climb mode is engaged, the controller works in two levels. Initially, a higher level
strategy is responsible for generating the reference trajectory and airspeed signals using a
simplified dynamics for prediction, whose objective is to maximise the energy gain over the
prediction horizon. At this stage, the thermal estimation procedure is also carried out. The
produced set-points are then sent to the lower level controller that performs predictions based
on a linearised version of the 3 DOF equations of motion. Its goal is to assure that the
specified optimal trajectory is tracked accordingly.

3.1.1 High-level controller
Simplified dynamics We suppose the aircraft dynamics can be transcribed to the following
set of equations:

_V = a
_ψ =ω
_xI =VcosðψÞ
_yI =VsinðψÞ
_zI =Vt;zðxI ; yIÞ +Vss;zðV ;ωÞ

(12)

They result from Equation (1) after a few simplifications are imposed. One assumes that the
effect of the atmospheric perturbation terms ∂Vw;z

∂x and ∂Vw;z

∂y is small and can be ignored. The
dynamics of the path angle ( _γ) is also neglected and its contribution is assumed to be
indirectly contained within a and ω variations. Those two variables, acceleration (a) and
angular velocity (ω), are treated as controls, which are actually supposed to be imposed

† See http://plato.asu.edu/sub/nlores.html#general for a comprehensive list of solvers.

1678 THE AERONAUTICAL JOURNAL

http://plato.asu.edu/sub/nlores.html#general


www.manaraa.com

through specific φ and CL changes. Moreover, the path angle is assumed to remain small and,
therefore, the airspeed (V) and its in-plane component (Vcos(γ)) are presumed to be indis-
tinguishable. Vt,z, on the other hand, is the updraft velocity estimation given by the elliptical
thermal model (Equation (6)), while Vss,z is the aircraft sink rate in calm atmosphere and
permanent flight condition (Equation (10)).

In fact, the system of equations (12) describes the kinematics of the airplane motion to
which a quasi-steady correction is applied in order to incorporate the essential effects gov-
erning thermal flight (see Section 2.3), i.e. the sink rate versus curve radius relationship and
the contribution of the air mass vertical velocity. The fidelity between the two sets of
equations (simplified and 3 DOF point-mass) is assured by proper selection of control (a and
ω) and control rate ( _a and _ω) bound constraints.

Cost function The performance index (Equation (13)), composed by the terminal cost
contribution only, is analogous to the one adopted by Lee et al(11) and Liu et al(12). It denotes
the objective of reaching the maximum energy state (kinetic plus potential) at the end of the
prediction horizon and is written in terms of the total specific energy. The minus signal is
included because in reality a minimisation problem is numerically solved

J =Ω xðtf Þ
� �

=� V2ðtf Þ
2g

�zIðtf Þ

 �

(13)

Prediction First, the sampling time ΔT and the number of prediction steps N are
selected, yielding the prediction horizon NΔT. The control values ðû= â ω̂½ �TÞ are
allowed to change only at each sample time interval and during the first M steps, hence,
the control horizon is MΔT. Throughout the remaining steps (up to N) u remains con-
stant. The predictions are initially performed using only the first two (linear) equations of
the system (12), being x̂= V̂ ψ̂

� 	T
the predicted state vector. Following the translation to

discrete time domain, using a zero-order-hold scheme(2), the system of linear discrete
state equations (14) can be obtained:

~ξðk + 1Þ= _ξ0ΔT + ~AξðkÞ + ~BΔ~uðkÞ
~yðk + 1Þ= ~C~ξðk + 1Þ + ~DΔ~uðk + 1Þ
Δ~uðk + 1Þ= ~uðk + 1Þ�~uðkÞ
~ξðkÞ=

h
~xðkÞT~uðk�1ÞT

iT
ð14Þ

They provide the state and output predictions at the step (k + 1) from the state and control
values at the previous step (k). Note that control variations (Δ~u) are used as decision
variables, so that an augmented state ~ξ has to be employed in order to integrate them,
keeping a record of the control amplitudes. Furthermore, the (~) notation indicates
variation from the linearisation point (x0, u0) and, in the current case, the output vector is
identical to the state vector, i.e. ~y= ~x= ~½V ~ψ �T .

The consecutive application of Equation (14) throughout a prediction horizon of N
steps enables one to evaluate the effect of a sequence of control actions ðΔÛÞ on the
output predicted history Ŷ

� �
. By doing so, the system of equations (15) results, where the

matrices Φ, Φ0 and G are composed of real and constant elements, while ffr is the system
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free response vector and ffr,0 stands for the linearisation point offset correction:

Ŷ=GΔÛ + ffr

ffr =Φ~ξðkÞ +Φ0ξ0 + ffr;0
Ŷ= ½ ŷðk + 1 j kÞT ŷðk + 2 j kÞT ¼ ŷðk +N j kÞT �T
ΔÛ= ½Δûðk j kÞT Δûðk + 1 j kÞT ¼ Δûðk +M�1 j kÞT �T ð15Þ

Equations (15) reveal that, as long as the system’s dynamics is linear, the predictions of airspeed
and heading angle (contained in vector Ŷ) are obtained by means of straightforward matrix
operations. Thereafter, once Ŷ and ΔÛ are known, the last three equations of the system (12) can
be integrated via a trapezoidal rule, leading to the aircraft position at each prediction step:

Ŷtraj = ½ x̂Iðk + 1 j kÞ ŷIðk + 1 j kÞ ẑIðk + 1 j kÞ ¼ ŷIðk +N j kÞ ẑIðk +N j kÞ �T
(16)

Two important aspects must be pointed out: (1) given a sequence of control actions, represented
by vector ΔÛ, the entire predicted output history is obtained explicitly, via simple mathematical
operations and, in particular, no implicit integral scheme is necessary; (2) bounds are imposed in
the following variables only: airspeed, acceleration, angular speed, acceleration rate and angular
speed rate. The system of equations (15) assures that all those constraints remain linear in the
entire prediction horizon, hence, they can be put together and written as indicated in Equation
(17), where S and b are a constant real matrix and vector respectively. No bounds are applied to
the aircraft position states (xI,yI,zI), because that would need non-linear restrictions to be
employed. However, this is not considered critical, since the most important constraints are by
far the ones related to the airspeed and controls, given that they reflect actual vehicle perfor-
mance limitations. Nevertheless, alternative procedures for dealing with airspace boundaries are
implemented (see Section 3.2.1):

SΔÛ≤ b (17)

Regarding the cost function (Equation (13)), one can readily infer that its discrete form is

J =� Ŷ
2ð2N�1Þ
2g

�Ŷtrajð3NÞ
 !

(18)

Transcription to a NLP problem After the discretisation and prediction procedures are
implemented, the optimisation problem is ready to be posed in NLP format, according to the
following equation:

min
ΔÛ

J =� Ŷ
2ð2N�1Þ
2g �Ŷtrajð3NÞ


 �
where;

Ŷ=GΔÛ + ffr
Ŷtraj =wðΔT ; Ŷ;ΔÛÞ

s:t:
SΔÛ≤ b

(19)

The function w in Equation (19) represents the previously described explicit integration
procedure applied to the last three equations of the system (12). Here, one of the advantages
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of using the present methodology is clearly seen. Since the differential restrictions are already
contained into the prediction scheme, no extra variables nor non-linear constraints are
introduced and the size of the NLP problem is dictated by the control vector size only, which
depends directly on the number of steps used to discretise the control horizon, i.e. the size of
ΔÛ (2M).

For solving the NLP problem, LINCOA optimisation algorithm(17)‡ is employed. It is able
to minimise a non-linear objective function subjected to linear inequality constraints and was
selected because only the objective function values need to be supplied, while most codes,
like IPOPT§, that is used by Lee et al(11) and Liu et al(12), require the derivatives of the
differential equations right-hand side, cost and constraint functions as inputs as well.
Therefore, the adoption of LINCOA is coherent with the proposal of the present work that
aims to provide a simple algorithm demanding minimal input and implementation efforts.

Thermal estimation Another responsibility of the high-level controller is to calculate the
thermal model (Equation (6)) parametres from data gathered along the vehicle trajectory. In
particular, the vertical wind speed values (V′w,z) must be recorded. There are different ways to
derive the instantaneous V′w,z, typically using a combination of measured signals (e.g. from
inertial and air data systems) and aircraft known parametres (e.g. drag polar) to feed specific
internal models. Kahn(10) and Edwards and Silverberg(6), for example, present two distinct
approaches. On the other hand, a simpler alternative is to take signals directly from com-
pensated total energy or netto variometres that nowadays equip most of the sailplanes. Of
course, the implementation of any of those methods requires attention to practical aspects, like
noise suppression and lag corrections; however, they are beyond the scope of this work. Thus,
for the simulations presented in Section 4, perfect measurement/estimation is assumed.
Hence, Equation (20) is used for computing the vertical velocity of the atmosphere (V′w,z) at
each sampling time step (j):

V 0
w;zðjÞ= _z0IðjÞ +V 0ðjÞsinðγ0ðjÞÞ (20)

When the climb mode is activated the data acquisition system starts working, performing the
readings at a certain rate (every ΔTte seconds). The current spatial position and wind vertical
speed value are then stored in vectors (Equation (21)), whose sizes are allowed to increase up
to a predefined value (Nte). After that threshold is reached, new measurements are registered;
however, at the same time, the oldest ones are removed from the vectors. That queue pro-
cedure not only saves computational resources but also permits the algorithm to adapt itself
when environmental conditions change with time:

XY0
te = x0IðjÞ y0IðjÞ x0Iðj�1Þ y0Iðj�1Þ ¼ y0Iðj�ðNte�1ÞÞ� 	T

V0
w;z = V 0

w;zðjÞ V 0
w;zðj�1Þ ¼ V 0

w;zðj�ðNte�1ÞÞ
h iT

ð21Þ

The thermal model (Equation (6)) is able to provide estimations of the vertical wind velocity
at each of the stored co-ordinates, yielding the vector

Vt;z = Vt;zðx0IðjÞ; y0IðjÞÞ ¼ Vt;zðx0Iðj�ðNte�1ÞÞ; y0Iðj�ðNte�1ÞÞÞ� 	T
(22)

‡ Code available at http://mat.uc.pt/˜zhang/software.html
§ Code available at https://projects.coin-or.org/Ipopt
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A non-linear least squares problem for fitting the model parametres (βte) is then written as

min
βte

Jte = Vt;z�V0
w;z

� �T
Vt;z�V0

w;z

� �
where;

βte = ½Vt;max Rt;x Rt;y xt;0 yt;0 η �T
s:t:

Steβte ≤bte

(23)

where Ste and bte impose bound constraints on βte.
For solving the data fitting problem above, the Scilab leastsq subroutine is employed. That

numerical procedure is performed whenever the high-level controller is called, providing an
updated set of thermal parametres to be used on its predictions.

3.1.2 Low-level controller
Set-points The optimal solution of the problem given by Equation (19), i.e. the high-level
controller outputs, are converted to set-points to be used by the low-level controller through
the following procedure:

1. The last iteration of the NLP algorithm produces the in-plane reference trajectory (xI,yI)
and airspeed (V) vectors discretised according to the sampling time (ΔT) used by the high-
level controller.

2. The reference trajectory is rewritten in a polar co-ordinate system whose origin is chosen
by a least squares procedure that fits a circumference arc to the sampled points.

3. By means of linear interpolation, the data are rediscretised using a sampling time
compatible with the low-level controller, yielding the set-point vector in Equation (24)
(composed by reference airspeed and radius values only). Its size equals twice the number of
steps in the low level prediction horizon (N):

Yr = ½Vrðk + 1Þ rrðk + 1Þ ¼ Vrðk +NÞ rrðk +NÞ �T (24)

Prediction The internal model adopted by the low-level controller is a linearised version of
the EOM (Equation (1)), but with the kinematics written in polar co-ordinates (Equation (4))
and disregarding atmospheric perturbations effects. The linearisation is performed numeri-
cally using a finite difference approach and basic parametres must be set, namely the sample
time (ΔT), number of prediction (N) and control (M) steps. Again, assuming a zero-order-hold
scheme, the conversion to discrete time domain is performed, leading to equations of motion
and prediction equations similar to Equations (14) and (15), respectively. This time, however,
the state, control and output vectors are

x= ½V γ ψ r θ zI �T
u= ½CL ϕ �T
y= ½V r �T ð25Þ

As a result of the full linear prediction scheme, bound constraints on airspeed (V), controls
(CL, φ) and control rates ð _CL; _ϕÞ can also be put in linear format, yielding a vector inequality
analogous to Equation (17).
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Cost function The cost function, composed by the stage cost part only, expresses the
objective of tracking predefined reference signals, while the control energy is also penalised.
In the discrete format, it is written as

J = Ŷ�Yr

� �TQ Ŷ�Yr

� �
+ΔÛ

T
RΔÛ (26)

Q and R are weighting matrices given by

Q=

Qð1Þ 0 ¼ 0
0 Qð2Þ ¼ 0

..

. ..
. . .

. ..
.

0 0 ¼ QðNÞ

2
666664

3
777775; R=

Rð1Þ 0 ¼ 0
0 Rð2Þ ¼ 0

..

. ..
. . .

. ..
.

0 0 ¼ RðMÞ

2
666664

3
777775 (27)

where the base weighting matrices Q and R can be chosen to vary along the prediction and
control horizons, although they are kept constant for the present study.

Transcription to a quadratic-programming problem If one substitutes Ŷ by the prediction
Equation (15), Equation (26) can be rewritten as function of the vector of input changes
only(2). The resulting optimisation problem has the form

min
ΔÛ

J = 1
2ΔÛ

T
HΔÛ + cTΔÛ

s:t:
SΔÛ≤b

(28)

where H and c are a real constant matrix and vector, respectively.
Equation (28) describes a standard linear quadratic-programming (QP) problem and several

algorithms are available for solving it. In our case, the Scilab qpsolve subroutine is used. By
selecting positive semi-definite (Q(k)≥ 0) and positive definite (R(k)> 0) base weighting
matrices, one guarantees that the Hessian matrix H is itself positive definite. Therefore, the
QP problem is convex and the convergence to the global minimum is assured.

Relinearisation and realignment At the kth time step, the problem given by Equation (28) is
solved and the control moves to be applied to the plant are extracted from the solution vector,
i.e. Δu kð Þ= ½ΔÛ�

1ð Þ ΔÛ�
2ð Þ�T . One step later, after ΔT seconds, the plant response (that

obviously may differ from the predicted one) to those controls is read and used to derive the
updated state vector, which is adopted as the new reference for the linearisation and prediction
processes associated to the following time step (k+ 1). In other words, the internal model is
relinearised and also realigned (model states are made equal to the plant states) at each time
step. Both procedures aim to increase the fidelity of the prediction scheme.

It is worthwhile mentioning that an analogous relinearisation and realignment approach is
adopted not only by the climb mode low-level controller, but whenever predictions are per-
formed. That includes the search mode, scan mode and the climb mode high-level controllers.

3.2 Search mode

The search mode is used for cruising after leaving a vanishing or weak thermal and intends to
explore the environment in order to find new updraft regions. During this phase, the first task
is to define a target waypoint to be reached according to the idea of always driving the UAV
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away from recently visited zones. A linear MPC controller is then used for the guidance,
being the reference heading and airspeed constantly updated. The first according to a line of
sight approach and the latter following the MacCready’s speed to fly rule.

3.2.1 Waypoints and reference signals
The reference for the heading angle We assume that a record of the vehicle’s inertial
position is kept at a certain predefined rate (once each ΔTwpt seconds) during the entire
mission. The data are stored in the XY′wpt vector with maximum size restricted to 2Nwpt in
order to save computational resources. A queue procedure is used to save new values while
disregarding the oldest ones. Equation (29) shows the vector at the jth acquisition step:

XY0
wpt = ½ x0IðjÞ y0IðjÞ x0Iðj�1Þ y0Iðj�1Þ ¼ y0Iðj�ðNwpt�1ÞÞ �T (29)

When the search mode is latched a reference waypoint (xI,wpt,yI,wpt) is readily derived from the
solution of a non-linear least squares problem, which is posed as follows:

min
xI;wpt ;yI;wpt

Jwpt =
PNwpt

i= 1
xI;wpt�XY0

wptð2i�1Þ� �2 + yI;wpt�XY0
wptð2iÞ

� �2h i�1
2

s:t:
xI;lo ≤ xI;wpt ≤ xI;up
yI;lo ≤ yI;wpt ≤ yI;up

(30)

The minimisation of the Jwpt cost function corresponds to the selection of a target waypoint
that is located far from zones already overflew by the airplane. However, the search is
restricted to a quadrilateral area whose bounds are xI,lo, xI,up, yI,lo and yI,up. As an extra
measure for avoiding the airplane to approach the airspace limits, the vector XY′wpt is
doubled in size before the solution process is carried out. The additional places are filled with
co-ordinates of points equally distributed along the boundary perimetre. Again, the Scilab
leastsq subroutine is the numerical tool selected for solving the least squares problem.

Once the waypoint is known, the heading angle set-point is updated at each time step
through a direct line of sight calculation using the UAV current position, as indicated by the
following equation:

ψ rðkÞ= tan�1 yI;wpt�yIðkÞ
xI;wpt�xIðkÞ

 �

(31)

When the waypoint is reached (assuming the scan mode is not engaged before), a new one is
calculated according to the same process.

The reference for airspeed The search mode reference airspeed is constantly corrected
according to MacCready’s speed to fly rule(18). The only input needed is the aircraft mass,
drag polar and the current sink rate ð_z0IÞ, that can be derived from sensor measurements
(GNSS or Pitot-static system). Function s in Equation (32) is the mathematical representation
of the MacCready calculations which are performed online at each prediction step

Vr = sð_z0IðkÞ; _zmcrdÞ (32)

_zmcrd is an adjustable parametre representing the expected climb ratio in the next thermal. It
corresponds to the typical ‘MacCready Ring’ setting, well known by glider pilots. For the
autonomous soaring algorithm, a fixed value _zmcrd = 0 is adopted.
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It is clear that the proposed methodology for calculating the reference airspeed is based on
a simplified optimisation procedure that assumes quasi-steady conditions and immediate
transition from level glide to centred thermal flight. Even though, it gives the autopilot, the
heuristic ability to speed up when flying into downdraft regions and slow down if updrafts are
found. Note that in both cases, reference heading and reference speed derivation, there is no
need for online solution of costly optimal control problems at each prediction step.

3.2.2 Controller details
The controller design, based on an entirely linear prediction model, is analogous to the one
described in Section 3.1.2, except that now the kinematic equations are written in Cartesian
co-ordinates (Equation (2)). In addition to that, the tracked outputs are now the airspeed and
the heading angle, computed according to Equations (32) and (31), respectively. At the kth
time step, they compose a set-point vector (Equation (33)) whose size is 2N. Note that the
reference values remain constant throughout the prediction horizon:

Yr = ½VrðkÞ ψ rðkÞ ¼ VrðkÞ ψ rðkÞ �T (33)

From the QP problem solution (Equation (28)), optimal control moves are calculated and
applied to the plant. After ΔT seconds, i.e. at the (k+ 1)th time step, its response is read again,
the references are updated and the entire process is repeated.

3.3 Scan mode

Intended to run immediately before the climb mode, the objective of the scan mode is to
perform a preliminary survey of the potential updraft zone, acquiring data for the initial
thermal estimation procedure. It works specifying a ‘8-shaped’ path as reference trajectory to
be followed by a linear MPC controller. The goal is to allow the four quadrants to be
explored, giving the algorithm a first signal of the thermal core direction with respect to the
location where the scan mode was latched.

Initially, a circular trajectory with preset values of radius (rr= rscan) and airspeed
(Vr=Vscan) is taken as set-point. A position at the left of the aircraft current path is selected as the
centre of the circumference, thus enforcing a curve to the left. Once the first turn is completed, a
second turn is requested, but this time to the right. That is accomplished by simply changing the
circumference centre co-ordinates to a point at the right side of the UAV original path.

A system design identical to the climb mode low-level controller (Section 3.1.2) is
employed for tracking the trajectory, though the set-point vector (Equation (24)) is now
constant instead of being provided by a higher order controller. In the same way, the data
acquisition process described in Section 3.1.1 is active, storing the vehicle current position
and estimated wind vertical speed into corresponding vectors (Equation (21)). However, the
thermal estimation procedure using that information is only executed if the climb mode is
subsequently activated.

3.4 Logic of operation

Figure 1 presents a block diagram that illustrates the logic of operation of the proposed
autonomous soaring algorithm, covering all the three autopilot modes. While the processing
steps have already been discussed in the previous sections, it is important to clarify the
decision steps, given that their settings play a major role in dictating the system overall
behaviour:
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∙ Evaluate Path: responsible for deciding whether a new thermal estimation followed by a
run of the high level MPC controller has to be executed. If ΔTref seconds have elapsed
from the previous run, then those procedures are performed, otherwise the last calculated
reference trajectory is kept as set-point to the low-level MPC controller.

∙ Leave Thermal: the thermal is abandoned if the height gain during the last ΔTclb seconds is
smaller than Δhclb. In that case, the operation mode is immediately switched to search.

∙ Waypoint Reached: if the aircraft is close to the current active waypoint within a pre-
defined tolerance (Δrwpt), the procedure for the next waypoint calculation is called.

∙ New Thermal: performs a continuous check for evidences indicating that the aircraft may
be crossing a thermal. In order to accomplish that, the total specific energy history is
observed. Again, the airspeed and height data acquired by basic sensors is assumed to be
subjected to perfect measurement and differentiation processes. Therefore, for the simu-
lations of Section 4, the instantaneous energy rate is obtained from Equation (34). If at a
given time step _e0 kð Þ is greater than a predefined threshold ð _esrcÞ and, at the same time, it is
less than its previous value, _e0ðk�1Þ, the algorithm understands that a potentially usable
updraft area was reached. This tries to reproduce a typical strategy adopted by glider pilots
for deciding when to start circling. Initiating the manoeuvre just before the compensated
climb rate begins to deteriorate usually assures a proper positioning with respect to the
thermal centre. Nevertheless, for the scan mode to be engaged, a further condition has to
be met: the search mode needs to have been latched for at least ΔTsrc seconds, avoiding
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Figure 1. Autonomous soaring algorithm flowchart.
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the aircraft to try to fly into a thermal it has just decided to abandon.

_e0ðkÞ= V 0ðkÞ _V 0ðkÞ
g

�_z0IðkÞ (34)

∙ 1st Turn Just Completed: evaluates if a 360° variation (since the scan mode was engaged)
in the θ polar co-ordinate was reached. If that condition is met, the centre of the reference
trajectory is switched to enforce the symmetrical circular path to be flown, now in the
opposite direction.

∙ 2nd Turn Completed: evaluates if a 360° variation (since the first turn completion) in the θ
polar co-ordinate was reached. If that condition is met, the scan mode is disengaged.

∙ Strong Thermal: immediately before the scan mode is unlatched, a decision on the next
action is taken. The climb mode is engaged if the just performed area scan indicates good
lift potential, otherwise the search mode is activated. A sufficiently strong thermal is
assumed to exist if the recorded total specific energy rate (Equation (34)) has remained
above a specified threshold ð _escanÞ for at least αscanΔTscan seconds, where ΔTscan is the
time spent for completing the two turns.

4.0 SIMULATION RESULTS
Numerical simulations were executed in a Scilab¶ framework into which dedicated Fortran
subroutines were integrated in order to optimise certain critical calculation steps. Notably, the
NLP solution is entirely performed by Fortran codes. Even though several cases have been
run, only results related to a single baseline scenario are presented herein for concision and
clarity. They are believed to illustrate the main features of the proposed algorithm.

The unpowered UAV, whose main properties are described in Table 1, is allowed to fly
over a 36 km2 quadrilateral area without altitude limitations, relying on the autonomous
soaring algorithm to find thermals and climb in order to remain aloft and maximise its
endurance. Such a condition is representative of typical UAV missions that require the aircraft
to persistently overfly a predefined zone, like surveillance, reconnaissance or data relay.
Clusters of thermals that can merge with each other and have different sizes, shapes and
intensities compose the atmospheric environment. They are randomly generated and dis-
tributed within the airspace to simulate a realistic condition. Moreover, thermals are sur-
rounded by downdraft zones, as typically observed in soaring flights, and each cluster is
assumed to have a finite lifespan during which its intensity varies according to a sinusoidal
law around the peak value. Once a cluster vanishes, a new one is assigned at a random
location. Figures 2–5 illustrate how the produced environment changes during the 1-h
simulation interval. Following values reported in the literature(1), lifespans that range from 10
to 20 min are assigned to the clusters, explaining why the medium at the end is completely
different from the one found at the beginning of the run. Note also how the scenario changes
considerably during the last 300 s (Figs 4 vs 5), mainly due to the weakening of several
clusters. Concerning the density of thermals, it is important to point out that a relatively high
value was selected aiming to enable the algorithms to be tested in a variety of updraft and
downdraft zones of distinct characteristics within a limited simulation time window.

¶ Available at https://www.scilab.org/en
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The adopted controller parametres are summarised in Table 2. Some of them reflect air-
frame limitations (e.g. stall speed and control bounds), while others were selected according
to practical considerations, like the 45 s (ΔTteNte) sliding time window for retaining the
estimated air vertical velocity data, which is analogous to the one used by Allen(4) and
Edwards(5) in test flights. In addition to that, several parametres were tuned during the
simulations to obtain the desired closed loop behaviour (e.g. the weighting matrices). Note
that the climb mode high-level controller works with a ΔT= 2 s sampling time, updating the
reference signals every ΔTref= 10 s. The related prediction horizon of 50 s (NΔT) has been
found to be a good trade-off. Small values make the controller avoid crossing short downdraft
zones to eventually reach the updraft core, or even prevent more aggressive manoeuvres (with
associated instantaneous sink rate increment) that are sometimes necessary to centre a ther-
mal. On the other hand, longer horizons imply proper centring performance, but also more
computational effort. Regarding the lower level controllers, all of them adopt a ΔT= 0.2 s
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Figure 2. Atmospheric environment at the beginning of simulation.
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Figure 3. Atmospheric environment after 300 s.
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sampling time and relatively short horizons, which has proven to yield accurate tracking of
the set-points.

The simulation started with the aircraft at a height of 1000m over co-ordinates (−2100 m,
− 2100 m) heading to the waypoint (2100 m, 2100 m). Figures 6 and 7 present the resultant
trajectory in 2D and 3D format, respectively. A great part of the airspace was scanned in
accordance with the waypoint calculation strategy used by the search mode. At the end of the
simulation window, the UAV had just detected a thermal in a still unexplored area, around
position (−1600 m, 250 m). It was able to keep safe altitudes during the entire flight (a
minimum of 887m at 387 s), as indicated in Fig. 8.

Figure 9 shows the operation mode status at each instant of time, where 1, 2 and 3 stand for
search, scan and climb, respectively. It was switched 22 times and the climb mode engaged in
five occasions (labels T1–T5 in Figs 6–9), with considerable atmospheric energy harvesting in
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Figure 5. Atmospheric environment at the end of simulation.
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Figure 4. Atmospheric environment after 3300 s.
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the last four attempts. Further, in three opportunities (around 1875, 2330 and 3365 s), a
thermal was encountered but the algorithm understood it was too weak and no circling was
attempted. Table 3 summarises the controller overall and per stage (climb and scan legs only)
performance. Notice that the flight terminated at a substantially higher altitude (a total gain

Table 2
Controller parametres used in the simulation

Search mode
ΔT (s) N M CL,lo CL,up

_CL;loð = sÞ _CL;upð = sÞ
0.2 20 5 0.1 1.4 − 0.2 0.2

ϕlo (deg) ϕup (deg) _ϕloðdeg= sÞ _ϕupðdeg= sÞ Vlo (km/h) Vup (km/h) _esrcðm = sÞ
− 50.0 50.0 − 20.0 20.0 67.0 220.0 0.0

Δrwpt (m) ΔTsrc (s) Q(1,1)a Q(2,2)a R(1,1)a R(2,2)a

10.0 15.0 1.0 10.0 1.0 1.0
Scan mode

ΔT (s) N M CL,lo CL,up
_CL;lo( ∕s) _CL;upð = sÞ

0.2 20 5 0.1 1.4 − 0.2 0.2

ϕlo (deg) ϕup (deg) _ϕloðdeg = sÞ _ϕupðdeg = sÞ Vlo (km/h) Vup (km/h) Vscan (km/h)

− 50.0 50.0 − 20.0 20.0 67.0 220.0 110.0

rscan (m) _escanðm = sÞ αscan Q(1,1)a Q(2,2)a R(1,1)a R(2,2)a

120.0 0.5 0.2 1.0 0.05 10.0 10.0

Climb mode – low level

ΔT (s) N M CL,lo CL,up
_CL;loð = sÞ _CL;upð = sÞ

0.2 20 5 0.1 1.4 − 0.1 0.1

ϕlo (deg) ϕup (deg) _ϕloðdeg= sÞ _ϕupðdeg = sÞ Vlo (km/h) Vup (km/h) rlo (m)

− 70.0 70.0 − 9.0 9.0 67.0 220.0 5.0

rup (m) ΔTclb (s) Δhclb (m) Q(1,1)a Q(2,2)a R(1,1)a R(2,2)a

+∞ 120.0 0.0 0.05 0.05 1.0 1.0

Climb mode – high-level

ΔT (s) N M alo (m/s2) aup (m/s2) _aloðm=s3Þ _aupðm=s3Þ
2.0 25 25 − 0.9 0.9 − 0.2 0.2

ωlo (deg/s) ωup (deg/s) _ωloðdeg = s2Þ _ωupðdeg = s2Þ Vlo (km/h) Vup (km/h) ΔTref (s)
− 30.0 30.0 − 3.0 3.0 75.0 220.0 10.0

General parametres

ΔTb
wpt (s) Nb

wpt ΔTc
te ðsÞ Nc

te
10.0 300 0.2 225

aQ and R are diagonal matrices.
bUsed by all modes.
cUsed by scan and climb modes.
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of 1684 m), while the mean rate of climb during successful climbs varied from 0.8 m/s to
1.8 m/s, values that fall well within the typical range attained by manned sailplanes.

A detailed view of the flight path immediately before the climb mode latching as result of
the encounter with the second thermal is presented in Fig. 10. The ‘8-shaped’ exploratory
orbit imposed by the previously engaged scan mode adequately covered the updraft area,
providing reasonable data to the first thermal estimate. Thereafter, the flight path converged to
a circular trajectory around the core, as indicated in Fig. 11. It is worth mentioning that, about
6.5 min after the climb mode engagement (the instant of time shown in Fig. 11), the updraft
intensity was considerably lower, indicating that it would soon be abandoned. Indeed, this
trend is confirmed by Figs 12 and 13, which show the height and the total energy rate
variation, respectively, from updraft encounter to the time when it was abandoned. After
having reached the maximum value around 550 s, the mean energy rate is clearly decreasing
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Figure 6. Flight path after 1 h – 2D view.
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with time as a result of the thermal weakening. The observed fluctuation in _e tð Þ is mainly due
to the fact that the environment is composed of non-circular updraft zones. For that reason,
the optimal path is generally not a permanent flight condition, so the UAV crosses areas of
different lift availability during each turn (Andersson et al(7) reported an analogous behaviour
during flight test). Moreover, the constant control actions, required to track the reference
trajectory, cause the vehicle drag to change, modifying the total energy rate, therefore,
contributing to the phenomenon.

Figures 14 and 15 reveal how the airspeed and radius behaved during the exploration of the
second thermal. The corresponding reference signals are also indicated, even though the two
sets of curves are almost indistinguishable on the scale of the figures, except for a restricted
zone around 435 s, which corresponds to the instant when the scan mode controller
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commanded the curve direction change. The set-point values remained constant at Vscan=
110 km/h and rscan= 120 m, while the plant response indicated a temporary deviation. Apart
from that short interval, the low-level controllers were able to closely track the references.

Table 3
Summary of soaring flight performance

Operation Spent Height Mean Mean

Stage Mode Time (s) Variation (m) RoC (m/s) Radius (m)

2 2 55 − 29 − 0.5 126
3a 3 153 17 0.1 75
5 2 55 − 5 − 0.1 127
6b 3 560 720 1.3 59
8 2 56 − 21 − 0.4 128
9c 3 579 1,069 1.8 59
11 2 55 − 46 − 0.8 126
13 2 55 − 57 − 1.0 127
15 2 55 − 18 − 0.3 126
16d 3 275 212 0.8 71
18 2 55 9 0.2 126
19e 3 336 479 1.4 69
21 2 55 − 57 −1.0 127
23 2 20 1 0.0 121
Overall 3,600 1,684 0.5
aThermal T1.
bThermal T2.
cThermal T3.
dThermal T4.
eThermal T5.
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Figure 10. Flight path 55 s after the encounter with the second thermal.
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At approximately t= 460 s, the climb mode was latched and from that moment on, the set-
points were updated by the high-level MPC controller every 10 s, explaining the small steps
seen in the responses. This feature is more noticeable in the case of Fig. 15, because the
reference point for measuring the radius is also re-evaluated accordingly.

As seen in Fig. 14, as soon as the climb mode was engaged, the guidance and control
algorithm started to reduce the airspeed until a value slightly superior to the aircraft minimum
sink velocity (see Table 1) was reached and maintained. At the same time, the radius
decreased to values between 45 and 65m approximately. Possibly, flying faster at the
beginning was preferred because reaching the updraft central region was more important than
saving height. Moreover, the initial thermal environment evaluations tend to be less accurate,
forcing the aircraft to seek every new estimated thermal core. It is important to point out that
the imposed airspeed lower constraint (67 km/h, see Table 2) was activated at nearly 400s.
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Figure 11. Flight path 445 s after the encounter with the second thermal.
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This is due to MacCready’s rule implemented on the search mode controller, that commanded
an airspeed decrease immediately after the UAV entered the positive climb zone of the
thermal. Nevertheless, the stall speed limit was not crossed, clearly illustrating the natural way
the constraints are treated by MPC schemes and its utility to autonomous soaring applications.

Figure 16 shows that the height response compares well to the high-level controller pre-
dictions throughout the initial climb phase within the second thermal. This validates both the
internal model based on the simplified dynamics and the thermal estimation scheme. Note that
even during the first seconds, when the radius and airspeed vary considerably and the aircraft
is clearly flying in a non-permanent regime, the applied quasi-steady corrections to the sink
rate lead to a relatively accurate prediction. As centring is progressively achieved, the dis-
crepancies become smaller. However, a different situation is seen towards the end of the
updraft life cycle, when the lift intensity is decreasing fast, according to the imposed sinu-
soidal rule. Since the thermal estimation procedure uses data related to the last 45 s, the
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Figure 13. Total energy rate response during the encounter with the second thermal.
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predicted updraft strength and consequently the height gains are overestimated, exactly as
indicated in Fig. 17. Possibly, the usage of time varying thermal models could minimise the
disparities and improve the climbing predictions. Nevertheless, as noticeable in the figure,
every 10 s, the high-level controller internal model is realigned. That operation, applied to the
entire set of state variables, is fundamental to keep the predictor’s accuracy.

A missed thermal situation is illustrated in Figs 18 and 19. The results of the total specific
energy evaluation made during the preliminary scan manoeuvre were not enough to cross the
imposed threshold, defined by the parametres _escan and αscan (Table 2), as explained in
Section 3.4. Thus, the updraft was considered unsuitable for climbing and the aircraft pro-
ceeded to the next calculated waypoint. It is important to add that the thermal was not
vanishing, but still growing, a scenario normally considered ideal by glider pilots. Indeed,
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Figure 15. Radius response and set-point during the encounter with the second thermal.
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possibly one more turn would be sufficient for the climb mode to be latched. Therefore, it
could be advantageous to somehow modify the scan algorithm in order to recognise the
current thermal stage, allowing recently formed ones to be exploited.

Table 4 presents a summary of the algorithm computational performance. It refers to the
proposed test case run on a 1.80 GHz quad-core CPU, 16 GB RAM personal computer
executing Scilab version 5.5.0 under Ubuntu Linux 64 bits. The displayed time intervals
encompass the entire set of operations needed for a single step, from the plant output mea-
surements to the control signal generation.

Thanks to the simplicity of the involved operations, the maximum recorded computation
time when only the low-level control actions are carried out is roughly half the sampling time
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Figure 17. Comparison between actual and predicted height responses – end of second thermal life cycle.
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Figure 18. Flight path 5 s after the encounter with the second missed thermal.
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(ΔT= 0.2 s). This is a promising result for a future real-time usage on flight hardware.
However, possible complications arise when the full computations have to be performed, i.e.
when the optimal reference trajectory has to be recalculated by the high-level MPC controller
and the thermal parametres updated. According to the ΔTref value in Table 2, this action is
taken every 10 s when the climb mode is latched, having being repeated 194 times during the
1-h simulation. For those cases, Table 4 states that calculation times greater than the ele-
mentary 0.2 s sampling time were recorded (up to 1.04 s). Fortunately, there is a straight-
forward way to deal with that problem which requires only slight modifications on the
algorithm. It consists in keeping the previously computed reference path until the current
calculation is completed. In order to emulate that, the simulation whose results were presented
throughout this section has been run with a fixed 1.2s lag in the high-level controller
response. Comparisons with analogous runs without any lag have shown that the main impact
is more aggressive control actions, once the set-points are suddenly updated and the controller
‘realises’ there is an error. Nevertheless, no significant closed-loop performance discrepancies
could be noted. Furthermore, the same approach can also serve as a tool for handling
infeasibility problems (so critical to MPC applications), since the previous reference solution
can be used at least until the high-level controller prediction horizon elapses.

It is important to point out that the thermal identification process, i.e. the least squares
fitting of the ellipsoid model, is responsible for approximately 30% of the calculation time per
step. Thus, alternative regression algorithms for estimating the updraft field could be tested in
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Figure 19. Flight path 100 s after the encounter with the second missed thermal.

Table 4
Required computation time

Complete stepa Regular step

Average (s) 0.61 0.05
Maximum (s) 1.04 0.12
a Includes the thermal estimation and the high-level MPC run (see Fig. 1).
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the future to speed up the computations. In the same way, the NLP problem solution takes
about 60% of the time. Although the LINCOA code worked successfully, it is not indicated
for very large numbers of variables. Hence, the adoption of codes which are more suitable to
high-dimensional NLP problems could further improve the performance.

5.0 CONCLUSION
The performed numerical simulations employing a 3 DOF model are the first step to
demonstrate the feasibility of the proposed guidance and control strategy. According to the
obtained results, a UAV running the developed algorithm, subsequently switching between
the three different operation modes, would be able to explore a non-homogeneous time
varying environment, identify, map, centre and climb in thermals without violating the air-
craft performance limitations. In other words, energy from the convective phenomena which
take place on the lower atmosphere could be successfully harvested without the help of
complex onboard equipment for lift detection, resulting in endurance increase.

Some critical aspects of the proposed methodology have been tested and verified. Most
notably, the simplified kinematic relations with quasi-steady sink corrections (the algorithm’s
core) have proven to yield sufficiently accurate predictions. Therefore, the present MPC
approach for autonomous soaring can serve as an alternative to existing schemes. Its main
advantage is certainly the capability of producing simpler and smaller non-linear optimisation
problems, thanks to the usage of explicit linear prediction schemes to the maximum extent
possible. For instance, the climb mode high-level controller used in the test case of Section 4
requires a NLP problem with only 50 variables and 150 linear inequalities to be solved at each
calculation step, covering a 50 s prediction horizon. If the differential constraints had to be
explicitly imposed, for example by directly using the 3 DOF non-linear EOM for prediction,
the number of variables would be much larger (by a factor of four approximately) and extra
non-linear constraints would have to be considered. Hence, one concludes that the present
methodology has the potential to facilitate the implementation of less complex, faster and
more efficient codes, ultimately leading to straightforward integration on flight hardware.
Indeed, the obtained computation times and adopted implementation strategies point to viable
real-time operation.

Following this preliminary study, additional developments are currently in progress before
moving towards flight testing.

REFERENCES

1. World Meteorological Organization. Weather forecasting for soaring flight, Technical Note No.
203, WMO-No. 1038, 2009.

2. MACIEJOWSKY, J.M. Predictive Control With Constraints, Pearson Education, Prentice Hall, 2002,
Harlow, England.

3. ALLEN, M. Autonomous soaring for improved endurance of a small uninhabitated air vehicle,
43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 10-13, 2005. https://
doi.org/10.2514/6.2005-1025.

4. ALLEN, M.J. Guidance and control of an autonomous soaring UAV, NASA/TM-2007-214611,
2007.

5. EDWARDS, D.J. Implementation details and flight test results of an autonomous soaring controller,
AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, August
18–21, 2008. https://doi.org/10.2514/6.2008-7244.

1699POGORZELSKI ET AL AUTONOMOUS SOARING USING A SIMPLIFIED MPC APPROACH

https://doi.org/10.2514�/�6.2005-1025
https://doi.org/10.2514�/�6.2005-1025
https://doi.org/10.2514�/�6.2008-7244


www.manaraa.com

6. EDWARDS, D.J. and SILVERBERG, L.M. Autonomous soaring: the Montague Cross–Country Chal-
lenge, J Aircr, 2010, 47, (5), pp 1763–1769. https://doi.org/10.2514/1.C000287.

7. ANDERSSON, K., KAMINER, I., DOBROKHODOV, V. and CICHELLA, V. Thermal centering control for
autonomous soaring; stability analysis and flight test results, Journal of Guidance, Control, and
Dynamics, 2012, 35, (3), pp 963–975. https://doi.org/10.2514/1.51691.

8. DAUGHERTY, S. and LANGELAAN, J.W. Improving autonomous soaring via energy state estimation
and extremum seeking control. AIAA SciTech Forum, National Harbor, Maryland; 2014. https://
doi.org/10.2514/6.2014-0260.

9. EDWARDS, D.J. Autonomous Locator of Thermals (ALOFT) autonomous soaring algorithm, NRL/
FR/5712–15-10, 272, 2015.

10. KAHN, A.D. Atmospheric thermal location estimation, Journal of Guidance, Control, and
Dynamics, 2017, 40, (9), pp 2363–2369. https://doi.org/10.2514/1.G002782.

11. LEE, D., LONGO, S. and KERRIGAN, E.C. Predictive control for soaring of unpowered autonomous
UAVs, 4th IFAC NMPC, Noordwijkerhout, NL, August 23–27, 2012. https://doi.org/10.3182/
20120823-5-NL-3013.00021.

12. LIU, Y., SCHIJNDEL, J.V., LONGO, S. and KERRIGAN, E.C. UAV energy extraction with incomplete
atmospheric data using MPC, IEEE Transactions on Aerospace and Electronic Systems, 2015,
51, (2), pp 1203–1215. https://doi.org/10.1109/TAES.2014.130657.

13. EDWARDS, D.J. Integrating Hydrogen Fuel Cell Propulsion and Autonomous Soaring Techniques,
2018, AIAA SciTech Forum, Kissimmee, FL. https://doi.org/10.2514/6.2018-1853.

14. BIRD, J.J. and LANGELAAN, J.W. Design space exploration for hybrid solar/soaring aircraft, 2017,
AIAA AVIATION Forum, Denver, CO. https://doi.org/10.2514/6.2017-4092.

15. THOMAS, F. Fundamentals of Sailplane Design. College Park Press, 1999, College Park, MD, US.
16. GEDEON, J. Dynamic analysis of dolphin-style thermal cross-country flight, Technical Soaring,

1973, III, (1), pp 9–19.
17. POWELL, M.J.D. On fast trust region methods for quadratic models with linear constraints,

Mathematical Programming Computation, 2015, 7, (3), pp 237–267. https://doi.org/10.1007/
s12532-015-0084-4.

18. REICHMANN, H. Cross Country Soaring, Soaring Society of America, Inc., 1993, Hobbs, NM.

1700 THE AERONAUTICAL JOURNAL

https://doi.org/10.2514�/�1.C000287
https://doi.org/10.2514�/�1.51691
https://doi.org/10.2514�/�1.G002782
https://doi.org/10.3182/20120823-5-NL�-�3013.00021
https://doi.org/10.3182/20120823-5-NL�-�3013.00021
https://doi.org/10.1109/TAES.2014.130657
https://doi.org/10.1007/s12532-015-0084-4
https://doi.org/10.1007/s12532-015-0084-4


www.manaraa.com

© Royal Aeronautical Society 2019 


	Autonomous soaring using a simplified MPC approach
	NOMENCLATURE
	Greek symbols
	Subscripts
	Superscripts

	1.0INTRODUCTION
	1.1Previous works
	1.2Present work contribution

	2.0PROBLEM FORMULATION
	2.1Equations of motion
	2.2Atmospheric effects

	Table 1Parametres of the aircraft�model
	2.3Steady Thermal Flight Optimisation
	2.4Optimal Control Problem
	2.5MPC-based solutions

	3.0ALGORITHM DESCRIPTION
	3.1Climb mode
	3.1.1High-level controller
	Simplified dynamics
	Cost function
	Prediction
	Transcription to a NLP problem
	Thermal estimation
	3.1.2Low-level controller
	Set-points
	Prediction
	Cost function
	Transcription to a quadratic-programming problem
	Relinearisation and realignment

	3.2Search mode
	3.2.1Waypoints and reference signals
	The reference for the heading angle
	The reference for airspeed
	3.2.2Controller details

	3.3Scan mode
	3.4Logic of operation

	Figure 1Autonomous soaring algorithm flowchart.
	4.0SIMULATION RESULTS
	Figure 2Atmospheric environment at the beginning of simulation.
	Figure 3Atmospheric environment after�300�s.
	Figure 5Atmospheric environment at the end of simulation.
	Figure 4Atmospheric environment after 3300�s.
	Table 2Controller parametres used in the simulation
	Figure 6Flight path after 1 h &#x2013; 2D�view.
	Figure 7Flight path after 1 h &#x2013; 3D�view.
	Figure 8Height variation.
	Figure 9Active controller operation�mode.
	Table 3Summary of soaring flight performance
	Figure 10Flight path 55 s after the encounter with the second thermal.
	Figure 11Flight path 445 s after the encounter with the second thermal.
	Figure 12Height response during the encounter with the second thermal.
	Figure 13Total energy rate response during the encounter with the second thermal.
	Figure 14Airspeed response and set-point during the encounter with the second thermal.
	Figure 15Radius response and set-point during the encounter with the second thermal.
	Figure 16Comparison between actual and predicted height responses &#x2013; second thermal centring.
	Figure 17Comparison between actual and predicted height responses &#x2013; end of second thermal life�cycle.
	Figure 18Flight path 5 s after the encounter with the second missed thermal.
	Figure 19Flight path 100 s after the encounter with the second missed thermal.
	Table 4Required computation�time
	5.0CONCLUSION
	References


